ISSN-0213-6686
Valencia

RODRÍGUEZ DA SILVA, F. & DE CERQUEIRA ROSSA-FERES, D.: Diet of anurans captured in forest remnants in southeastern Brazil .. 5

TEIXEIRA, R.L. & FERREIRA, R.B.: Diet and fecundity of Sphaenorhynchus planicola (Anura, Hylidae) from a coastal lagoon in southeastern Brazil 19

SCHAFFER E.F. & KEHR, A.I.: Comportamiento reproductivo de Physalaemus albonotatus (Steindachner, 1864) (Anura, Leiuperidae) en el nordeste argentino . 27

LADRÓN DE GUEVARA, M., LIZANA, M., ÁVILA, C. & BEA, A.: Análisis de los patrones de distribución de los anfibios en Álava y Condado de Treviño 41

ROCA, V. & GALDÓN, M.A.: Presencia de virus eritrocitarios de lagartos (LEV) en Podarcis bocagei y P. carbonelli (Lacertidae) del noroeste de Portugal 61

PÉREZ I DE LANUZA, G. & FONT, E.: Lizard blues: blue body colouration and ultraviolet polychromatism in lacertids ... 67

NAVARRO, P., ASIMAKOPOULOS, B., ESCRIBANO, V. & LLUCH, J.: Infraocomunidades helminticas de dos poblaciones de Bombina variegata (Linnaeus, 1758) en Grecia... 85

ESCORZA, D.: Ecological niche modeling of two Afrotropical snakes: is the Sahara desert a true barrier for these species? ... 93

Normas de publicación de la Revista Española de Herpetología 101

Instructions to authors for publication in the Revista Española de Herpetología. 105

The Revista Española de Herpetología is the peer-reviewed scientific journal of the Asociación Herpetológica Española (AHE). It is indexed/abstracted by the following services: BiologyBrowser, BIOSIS, CINDOC, Dialnet, Herpetological Contents, Revicien, and Zoological Record.
Diet and fecundity of *Sphaenorhynchus planicola* (Anura, Hylidae) from a coastal lagoon in southeastern Brazil

ROGÉRIO L. TEIXEIRA 1 & **RODRIGO B. FERREIRA** 2

1 *Museu de Biologia Prof. Mello Leitão, Av. José Ruschi 4, Centro, 29650-000, Santa Teresa, Espírito Santo, Brazil*
2 *Department of Wildland Resources and Ecology Center, Utah State University, 5305 Old Main Hill, Logan, UT 84322-5305, USA* (e-mail: rbfherpeto@gmail.com)

Abstract: The diet and fecundity of *Sphaenorhynchus planicola* inhabiting a coastal lagoon in southeastern Brazil were analyzed. Diet was examined in 85 exemplars of both males and females, and fecundity was analyzed in seven females. The studied population was male-biased with females much larger than males. Large proportions of the diet consisted of small arthropods. Prey size changed with growth suggesting ontogenetic trophic shift. Colonial arthropods, such as ants, were mainly ingested. Coleoptera larvae were also found in the stomach contents suggesting that the home range of *S. planicola* includes adjacent areas that have a supply of leaf litter and deadwood. The variety of ingested preys and high consumption of ants indicate *S. planicola* uses both active and sit-and-wait foraging behavior. The mean fecundity of *S. planicola* is 192.7, which is considered typical for hylids of this size. The population at the studied site seems to be small, suggesting that habitat degradation is affecting population size.

Key words: Brazil, fecundity, feeding, foraging, Hylidae.

INTRODUCTION

Proper management of wildlife populations requires an in-depth knowledge of the natural history of each species. Diet composition and habitat use have been investigated in amphibians (Toft, 1980, 1981; Teixeira & Vrcibradic, 2004; Ferreira *et al.*, 2007). Many species, however, require ecological information such as hylids. Without knowing how species utilize their environment, species numbers...
could easily decline for seemingly unknown reasons.

Anurans are generally considered to be opportunists in relation to their feeding habits, and most of them act as ambush predators of small arthropods (Toft, 1980; Teixeira & Vrcibradic, 2004). Their diet reflects the microhabitat where they live, their ability to prey, and the abundance of potential prey (Duellman & Trueb, 1994; Giaretti et al., 1998).

Sphaenorhynchus planicola (Lutz & Lutz, 1938) is a small, greenish hylid frog distributed along the coast from the south of Bahia State to Rio de Janeiro State in southeastern Brazil. It spawns green eggs around floating vegetation, and is limited to permanent water bodies that contain a lot of floating vegetation (Izecksohn & Carvalho-e-Silva, 2001). *Sphaenorhynchus planicola* is also known to adapt well to disturbed habitats (Cruz & Telles, 2004). This species is considered to be of Least Concern by the IUCN (2009) due to its wide distribution. Even so data on its range, biology and ecology are scarce (Cruz & Telles, 2004), and no research has addressed the diet of *S. planicola*. The aim of this study was to determine (1) diet, and (2) fecundity of a *S. planicola* population inhabiting one coastal lagoon of southeastern Brazil.

MATERIAL AND METHODS

Study site

The study site was situated in the coastal Maimbá lagoon (20° 45' S, 40° 57' W, 8 m a.s.l.), located in the municipality of Anchieta, state of Espírito Santo, southeastern Brazil. In the border of this coastal lagoon we established one 100 m long transect.

The studied area belongs to type Aw Tropical according to Köppen’s Climate Classification (Köppen, 1936), with high temperatures, a rainy summer (December-March) and a dry winter (June-September). The average monthly rainfall in the Anchieta region is 1200 mm, and the mean annual temperature is 25°C (Incaper, 2008).

Before a road linking the municipalities of Anchieta and Guarapari was built ca 40 years ago, the Maimbá lagoon was an estuarine system. Today, this lagoon is a freshwater system and its vegetation is dominated by *Typha domingensis* (Typhaceae). The largest area of the study site was characterized by floating vegetation, represented mainly by *Salvinia* sp. (Salviniaceae). The site is linked to the ocean by a narrow channel covered with *T. domingensis*. The environment around the lagoon has been, for the most part, greatly modified by humans and is characterized by herbaceous vegetation. The soil is very disturbed due to cattle using this site to drink, and the water has evidence of bovine and human feces.

Originally, the terrestrial environment of the study area was comprised mainly of “restinga” vegetation (Rizzini, 1979), included in the Tropical Atlantic Rain Forest morphoclimatic domain, which covered 90% of Espírito Santo state. Presently, vegetation has been reduced by 8.9% (SOS Mata Atlântica, 2004) due to economic exploitation including sand removal, heavy logging, and urban development (Ccremad, 1992).

Samples

Research was conducted bimonthly from November 1994 through September 1995, and monthly from November 1996 through March 1997. The studied area was searched by one researcher, who manually collected the samples randomly along the transect. When a frog was collected the use of the microhabitat when first observed was
recorded. Collected frogs were measured alive (snout-vent length [SVL], to the nearest 0.1 mm with Vernier calipers) and weighed using a digital balance (0.1 g precision). After collection the frogs without apparent oocytes inside their body had the stomach contents removed using the stomach-flushing method (Léglér & Sullivan, 1979). Frogs were released at the capture site during the same night. The stomach contents were placed in 70% ethanol until further examination. Seven females with mature oocytes were immediately euthanized with ether and transferred to 10% formalin for 24 h. They were then washed and preserved in 70% alcohol. These females were later dissected for fecundity determination and stomach content analysis. For fecundity analysis the number of oocytes was counted in each ovary.

Stomach contents obtained from both the males and females were identified to the lowest taxonomic category possible using a stereomicroscope. The relative importance of each food type was assessed based on the frequency of occurrence (F), number of prey (N), and wet weight (W); the latter was measured with a digital balance (± 0.0001 g). The frequency of occurrence was defined as the number of individuals that had item i in the stomachs, divided by the total number of sampled exemplars. Weights of the contents were taken after removing excess water with an absorbent paper. Intact prey items were measured to their total length using veneer calipers (to the nearest 0.1 mm). The vegetation found in the stomachs could not be properly quantified and therefore was not considered in the analyses, with exception of seeds.

Statistical Procedures

Sex ratio was assessed using the chi-square test (χ^2), and the difference in the mean SVL between males and females was tested using one-way analysis of variance (ANOVA). Before applying ANOVA, data were tested for normality (Kolmogorov-Smirnov test) and homoscedasticity (Levene’s test). When necessary, data were log$_{10}$ transformed. Cluster analysis based on the Euclidian distances was performed in order to identify possible trophic ontogenetic variation in different SVL groups. For this, only log transformed data of prey size was used.

RESULTS

Eighty eight individuals of *Sphaenorhynchus planicola* were collected on floating vegetation, basically on *Salvinia* sp. Seventy seven of the individuals were males that ranged in SVL from 11.4 to 25.2 mm (mean = 22.2 mm, SD = 2.1 mm). Only eight females totalized our samples, and they varied in SVL from 24.2 to 27.9 mm (mean = 25.9 mm SVL, SD = 1.5 mm). The mean SVL was significant different between sexes (ANOVA: $F_{1,81} = 42.9$, $p < 0.01$), females being much larger than males. The sex ratio was 9.6:1, which was significantly different from the expected 1:1 ratio ($\chi^2 = 56.0$, $p < 0.01$). The other three individuals collected were considered juveniles since they were smaller and we were not able to identify the sex.

Seventy-four (87.0%) individuals had some prey in their stomachs (Table 1). Formicidae were the dominating food item, representing 46.3% of frequency, 58.7% of the number of prey, and 59.15% of the wet weight. Coleoptera larvae were the second largest prey group in the diet of *Sphaenorhynchus planicola*. Both groups represented 86.2% of the total food items, and 78.5% of the total prey weight. Our results suggest that individuals smaller than 26.0 mm SVL fed mostly on ants, while the largest fed on a greater prey variety (Fig. 1).
Seven females collected during the rainy season had mature oocytes. The number of oocytes was positively related to SVL ($y = 13.2x - 151.9$, $R^2 = 0.81$, $p < 0.05$, $n = 7$) (Fig. 2).

DISCUSSION

Interactions with plants play an important role for the success of *Sphaenorhynchus planicola* at the Maimbá lagoon, since all individuals were collected on floating vegetation. This vegetation probably determines the distribution of *S. planicola* in the Maimbá lagoon, which is restricted to the studied area. In addition the green coloration of the frog offers a good camouflage when sitting on *Salvinia* sp., becoming difficult to detect by day-active predators. Its cryptic coloration probably contributes to its survivorship in this area.

The sex ratio is an important characteristic when assessing aspects of population structure. In most animals, a sex-ratio of 1:1 is expected (Leigh, 1970), but in our studied population the ratio was male biased. This may be because our sampling method was biased in favor of calling individuals. Perhaps this difference is only a characteristic of this specific population. Even so females are considered for some authors as a scarce resource at breeding sites, which consequently determines sexual selection (Wells, 1977; Ryan, 1985; Robertson, 1986). Facultative sex ratio variation will only be favored when its fitness benefits are greater than its cost (West et al., 2002). Male-male competition during the reproductive period may give some advantage for the future generation; for example, producing a better singer, since most females have a preference for more

<table>
<thead>
<tr>
<th>Food items</th>
<th>Guilds</th>
<th>F</th>
<th>F (%)</th>
<th>N</th>
<th>N (%)</th>
<th>W</th>
<th>W (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insecta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coleoptera (adult)</td>
<td>TA</td>
<td>3</td>
<td>3.8</td>
<td>3</td>
<td>2.8</td>
<td>7.5</td>
<td>3.6</td>
</tr>
<tr>
<td>Coleoptera (larvae)</td>
<td>TH</td>
<td>28</td>
<td>35.0</td>
<td>30</td>
<td>27.5</td>
<td>40.4</td>
<td>19.4</td>
</tr>
<tr>
<td>Diptera</td>
<td>GF</td>
<td>2</td>
<td>2.5</td>
<td>2</td>
<td>1.8</td>
<td>0.4</td>
<td>0.2</td>
</tr>
<tr>
<td>Homoptera</td>
<td>GF</td>
<td>1</td>
<td>1.3</td>
<td>1</td>
<td>0.9</td>
<td>0.7</td>
<td>0.3</td>
</tr>
<tr>
<td>Hymenoptera (Formicidae)</td>
<td>TC</td>
<td>37</td>
<td>46.3</td>
<td>64</td>
<td>58.7</td>
<td>123.2</td>
<td>59.1</td>
</tr>
<tr>
<td>Lepidoptera (larvae)</td>
<td>TH</td>
<td>2</td>
<td>2.5</td>
<td>2</td>
<td>1.8</td>
<td>6.3</td>
<td>3.0</td>
</tr>
<tr>
<td>Orthoptera</td>
<td>TA</td>
<td>2</td>
<td>2.5</td>
<td>2</td>
<td>1.8</td>
<td>5.5</td>
<td>2.6</td>
</tr>
<tr>
<td>Arachnida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Araneae</td>
<td>TH</td>
<td>3</td>
<td>3.8</td>
<td>3</td>
<td>2.8</td>
<td>20.6</td>
<td>9.9</td>
</tr>
<tr>
<td>Mollusca</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gastropoda</td>
<td>TA</td>
<td>1</td>
<td>1.3</td>
<td>1</td>
<td>0.9</td>
<td>1.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seed</td>
<td>-</td>
<td>1</td>
<td>1.3</td>
<td>1</td>
<td>0.9</td>
<td>1.8</td>
<td>0.9</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>109</td>
<td>100.0</td>
<td>208.3</td>
<td>100.0</td>
</tr>
</tbody>
</table>

TABLE 1. Prey types found in the stomach of *Sphaenorhynchus planicola*. F: frequency, N: number, W: weight (in mg), TA: terrestrial prey, active on ground, TC: terrestrial and colonial prey, TH: terrestrial prey, hidden on surface, and GF: flying prey

complex calls (frequency and rates), which generally are produced by more fit males (Greers & Wells, 1980).

Males were significantly smaller than the females, which is a typical finding in most species of frogs (Hayek & Heyer, 2005). Current evidence suggests that sexual dimorphism in size reflects the adaptation of males and females in their different reproductive roles (Fairbairn, 1997).

The population of *Sphaenorhynchus planicola* analyzed here is characterized by a fecundity which is typical for hylids of this size. Prior to our study, only data for a single female *S. surdus* (Cochran, 1953) of 28.4 mm with 149 eggs were available (see Pombal & Haddad, 2005). *S. planicola* has a quite similar fecundity in relation to others hylids with similar SVL, such as *Dendropsophus microps* Peters, 1873 of 31.4 mm with 336 eggs, *D. minutus* (Peters, 1872) of 24.9 mm with 255 eggs, and *S. fuscomarginatus* (Lutz, 1925) of 20 mm with 226 eggs (see Pombal & Haddad, 2005). Thus as our study and others have pointed out, fecundity in hylids is directly related to a frog’s SVL.

Our research is the first study addressing ecological aspects of *Sphaenorhynchus* frogs. Although further investigation is necessary, we suspect that the *Sphaenorhynchus planicola* population at our study site is small. It is probably related to the water eutrophication of the Mamba lagoon, and by heavy predation by fish and belostomatids found at the study site (R.L. Teixeira & R.B. Ferreira, unpublished data). Smaller individuals of *S. planicola* were found feeding primarily on small ants, which is in line with previous research that suggests frogs prey mainly on small arthropods (e.g. Toft, 1981; Van Sluys et al., 2001; Santos et al., 2004; Ferreira et al., 2007). Prey size is strongly related to a frogs’ mouth width (Emerson, 1985). The trophic ontogenetic shift found by cluster analyses suggests that the *S. planicola* avoids intraspecific competition, which is a strategy that has been reported for many anuran species (Giaretta et al., 1998; Ferreira et al., 2007). Although all individuals were collected on floating vegetation, the home range may also include leaf litter and dead wood on land. This
assumption is based on the relatively large amount of Coleoptera larvae that was ingested.

Toft (1981) stated that foraging behavior and the number of prey in the stomach is correlated with the degree of specialization on ants; the sit-and-wait foragers rarely caught ants, and instead, they ate one or two large prey. Conversely, the more active forager has a higher proportion of ants in their diet. However, for some species along the continuum, inclusion in a particular guild may be arbitrary. Thus we suggest that *Sphaenorhynchus planicola* has a combination of the two foraging strategies. This frog may behave as an active forager until it finds an ant nest or trial, like small leaf frogs such as *Oophaga pumilio* (see Donnelly, 1991) and *Hypsiboas pulchellus* (see Maneyro & Rosa, 2004), where they become in that situation a sit-and-wait predator. Besides the sit-and-wait behavior response for the wide variety of prey, which indicates a generalist feeder, *S. planicola* has a slight preference for ants. Feeding on colonial arthropods is a great advantage for anurans because these invertebrates comprise approximately 70% of the animal biomass in the tropical forest (Hölldobler & Wilson, 1990).

Acknowledgements

We thank U. Caramaschi for identifying the frogs and M. Hoffmann for preparing the voucher specimens. We thank V. Gonzalez, J. Khoch, J. Rodriguez, C. Waichert, and an anonymous reviewer for useful suggestions on an early draft of the manuscript. We also thank Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA) for permission to collect the frogs (Proc. No. 302657/87.8 DCT/SCV/CBMA and 2885/95-15 SUPES/ES).

REFERENCES

ms # 257
Recibido: 29/04/09
Aceptado: 09/02/10
RODRÍGUEZ DA SILVA, F. & DE CERQUEIRA ROSSA-FERES, D.: Diet of anurans captured in forest remnants in southeastern Brazil .. 5

TEIXEIRA, R.L. & FERREIRA, R.B.: Diet and fecundity of *Sphaenorhynchus planicolosa* (Anura, Hylidae) from a coastal lagoon in southeastern Brazil 19

SCHAEFER E.F. & KEHR, A.I.: Comportamiento reproductivo de *Physalaemus albonotatus* (Steindachner, 1864) (Anura, Leiuperidae) en el nordeste argentino . 27

LADRÓN DE GUEVARA, M., LIZANA, M., ÁVILA, C. & BEA, A.: Análisis de los patrones de distribución de los anfibios en Álava y Condado de Treviño 41

ROCA, V. & GALDÓN, M.A.: Presencia de virus eritrocitarios de lagartos (LEV) en *Podarcis bocagei* y *P. carbonelli* (Lacertidae) del noroeste de Portugal........ 61

PÉREZ I DE LANUZA, G. & FONT, E.: Lizard blues: blue body colouration and ultraviolet polychromatism in lacertids ... 67

NAVARRO, P., ASIMAKOPOULOS, B., ESPIRIBANO, V. & LLUCH, J.: Infracomunidades helmínticas de dos poblaciones de *Bombina variegata* (Linnaeus, 1758) en Grecia... 85

ESCORZA, D.: Ecological niche modeling of two Afrotropical snakes: is the Sahara desert a true barrier for these species? ... 93

Normas de publicación de la Revista Española de Herpetología 101

Instructions to authors for publication in the Revista Española de Herpetología. 105

The Revista Española de Herpetología is the peer-reviewed scientific journal of the Asociación Herpetológica Española (AHE). It is indexed/abstracted by the following services: BiologyBrowser, BIOSIS, CINDOC, Dialnet, Herpetological Contents, Revicien, and Zoological Record.